Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

نویسندگان

  • Tamara J. Nicolson
  • Elisa A. Bellomo
  • Nadeeja Wijesekara
  • Merewyn K. Loder
  • Jocelyn M. Baldwin
  • Armen V. Gyulkhandanyan
  • Vasilij Koshkin
  • Andrei I. Tarasov
  • Raffaella Carzaniga
  • Katrin Kronenberger
  • Tarvinder K. Taneja
  • Gabriela da Silva Xavier
  • Sarah Libert
  • Philippe Froguel
  • Raphael Scharfmann
  • Volodymir Stetsyuk
  • Philippe Ravassard
  • Helen Parker
  • Fiona M. Gribble
  • Frank Reimann
  • Robert Sladek
  • Stephen J. Hughes
  • Paul R.V. Johnson
  • Myriam Masseboeuf
  • Remy Burcelin
  • Stephen A. Baldwin
  • Ming Liu
  • Roberto Lara-Lemus
  • Peter Arvan
  • Frans C. Schuit
  • Michael B. Wheeler
  • Fabrice Chimienti
  • Guy A. Rutter
چکیده

OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8(-/-) mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc and diabetes.

Zn2+ ions are essential for the normal processing and storage of insulin and altered pancreatic insulin content is associated with all forms of diabetes mellitus. Work of the past decade has identified variants in the human SLC30A8 gene, encoding the zinc transporter ZnT8 which is expressed highly selectively on the secretory granule of pancreatic islet β and α cells, as affecting the risk of T...

متن کامل

Intracellular zinc in insulin secretion and action: a determinant of diabetes risk?

Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge ran...

متن کامل

Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice.

Zinc co-crystallizes with insulin in dense core secretory granules, but its role in insulin biosynthesis, storage and secretion is unknown. In this study we assessed the role of the zinc transporter ZnT8 using ZnT8-knockout (ZnT8(-/-)) mice. Absence of ZnT8 expression caused loss of zinc release upon stimulation of exocytosis, but normal rates of insulin biosynthesis, normal insulin content and...

متن کامل

Effects of high-fat diet feeding on Znt8-null mice: differences between β-cell and global knockout of Znt8.

Genomewide association studies have linked a polymorphism in the zinc transporter 8 (Znt8) gene to higher risk of developing type 2 diabetes. Znt8 is highly expressed in pancreatic β-cells where it is involved in the regulation of zinc transport into granules. However, Znt8 is also expressed in other tissues including α-cells, where its function is as yet unknown. Previous work demonstrated tha...

متن کامل

hZnT8 (Slc30a8) Transgenic Mice That Overexpress the R325W Polymorph Have Reduced Islet Zn2+ and Proinsulin Levels, Increased Glucose Tolerance After a High-Fat Diet, and Altered Levels of Pancreatic Zinc Binding Proteins

Zinc (Zn2+) is involved in both type 1 diabetes (T1DM) and type 2 diabetes (T2DM). The wild-type (WT) form of the β-cell-specific Zn2+ transporter, ZNT8, is linked to T2DM susceptibility. ZnT8 null mice have a mild phenotype with a slight decrease in glucose tolerance, whereas patients with the ZnT8 R325W polymorphism (rs13266634) have decreased proinsulin staining and susceptibility to T2DM. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009